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Isocyanide Insertion Reactions. 
The Role of Isocyanide Insertions in the 
Metal Assisted Hydrogenation of Isocyanides 

Sir: 

Several recent reports have described the first examples of 
the homogeneous hydrogenation of heteronuclear triple bonds.1 

CI3 

Figure 1. An ORTEP diagram of (W-CHNC6H5)(M-H)Os3(CO)9 showing 
50% probability ellipsoids. 

In the belief that an insertion reaction is the first step in the 
known catalytic activity of the cluster compound 
Os3(CO)i2, la 'b we have examined the reaction of the closely 
related H20s3(CO)io with phenyl isocyanide. The initial re­
action product, I,2 has the formula H 2 O S 3 ( C O ) 1 0 ( C N C 6 H 5 ) 
which is formally analogous to the previously reported com­
pounds H20s3(CO)inL.3 This complex probably has a struc­
ture analogous to those of H2Os3(CO)H4 and H2Os3-
(CO)1 0P(C6H5)35 since the infrared spectrum clearly shows 
the presence of a terminally coordinated isocyanide ligand, 
KCN) 2190 cm - 1 , and the 1H NMR spectrum shows both 
bridging and terminal hydride ligands.6 

Upon refluxing in n-butyl ether,7 I loses 1 mol of CO and 
is transformed into the new complex, II, of formula 
HOs3(CO)9(CHNC6H5) which is believed to be a possible 
intermediate in the phenyl isocyanide reduction process. 

The molecular structure of II was established by x-ray 
crystallographic methods, and is shown in Figure I.8 II con­
tains a cluster of three osmium atoms and nine linear carbonyi 
groups, but the most important feature is an 7V-phenyl formi-
midoyl ligand which bridges the three osmium atoms.9 '10 In­
terestingly, the C(IO)-N bond distance is very long at 1.415 
(11) A. We believe that this long distance indicates a high 
degree of reduction of the formimidoyl carbon-nitrogen double 
bond, and that this effect may, in turn, pave the way for further 
reduction processes.12 

The formimidoyl hydrogen atom, H(IO), was located 
crystallographically, and is attached solely to the formimidoyl 
carbon, C(IO). The location of this hydrogen atom was also 
supported through the 1H NMR spectrum which showed a 
characteristic singlet at r -0 .69 ppm. A second singlet at r 
27.45 ppm indicates that the remaining hydrogen atom is 
present as a bridging hydride ligand, but this was not located 
in the structure analysis. 

The characterization of this formimidoyl ligand strongly 
indicates the occurrence of an insertion rearrangement in­
volving the isocyanide ligand and a metal-hydrogen bond.13 

The fact that the ligand is bonded to three osmium atoms may 
be a very important and certainly a unique feature of cluster 
chemistry.15 Although we have not yet obtained complete re­
duction of the isocyanide ligand, this has recently been 
achieved for a different cluster system.10 Our studies to date, 
however, do demonstrate the important first steps in the hy­
drogenation process and thoroughly reveal the manner in which 
this partially hydrogenated isocyanide is bonded to the cluster 
unit. 
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Tetrametallic Nickel-Boron Clusters, 
(»75-C5H5)4Ni4B4H4 and (775-C5Hj)4Ni4B5H5. Synthesis 
of Metalloboron Cluster Systems by Transition Metal 
Aggregation on a Small Borane Framework 

Sir: 

The reaction1 of BsHg - ion with C0CI2 and C 5 H s - m cold 
tetrahydrofuran (THF) generates, among other products, a 
series of polyhedral cobalt-boron clusters having a high metal 
content, e.g., (775-C5Hs)2Co2B4H6, (775-C5Hs)3Co3B3H5, 
(775-C5Hs)3Co3B4H4, and (775-C5Hs)4Co4B4H4, all of which 
have been crystallographically characterized.2 The major 
cobaltaborane product of the reaction is the square-pyramidal 
complex 2-(775-C5Hs)CoB4Hg, a B5H9 analogue; further ad­
dition of cobalt to the bridge-deprotonated anion of that 
species, (775-CsH5)CoB4H7

-, produces the same metal-rich 
clusters.3 

The formation of these metalloboron cages can be envisioned 
as a stepwise aggregation of cyclopentadienylcobalt units onto 
a borane substrate, which thereby serves as a nucleation center. 

(C5H5I4Ni4B4H4 

(C5H5)4Ni4B5H5 

Figure 1. (a) Structure of (77^C5Hs)4Ni4B4H4 (1). (b) Proposed structure 
of (775-C5H5)4Ni4B5H5 (II). The molecule is bisected by a mirror plane 
through Ni(I), Ni(2), and B(4). 

Moreover, since in each of the polyhedral cobalt-boron clusters 
the metal atoms show a distinct propensity to adopt adjacent 
vertices in the cage framework,2 it appears that the presence 
of one or more cobalt centers in the cage promotes the further 
addition of cobalt.4 That this phenomenon is not limited to 
cobalt is suggested by the preparation from CB5H9 of a tri-
metallic (775-C5H5)3Ni3CB5H6 complex containing two Ni-Ni 
interactions,5 and the synthesis of a (775-C5Hs)2Ni2BiOHiO 
complex which is proposed to have adjacent metal atoms, from 
the B10H102- ion.6 Moreover, in the closely related metallo-
carborane family there are numerous examples of di- and tri-
metallic species in which the metals kinetically adopt vicinal 
locations in the polyhedron (although in some cases they mi­
grate at elevated temperature to nonvicinal positions).7 

In this communication we report a major extension of this 
pattern with the synthesis of two tetranickel species which are 
the second and third examples (after (T75- C5H5)4Co4B4H4

lb 'c) 
of metalloboron polyhedra containing four metal atoms, and 
are new representatives of "hybrid" cages1 linking the borane 
and metal cluster families. The treatment of 22 mmol of 
Na + B 5 Hg - (prepared from B5H9 and NaH) with 34 mmol of 
(r)5-C5H5)2Ni and sodium amalgam containing 36 mmol of 
Na in THF at —30 0 C, with subsequent stirring at 0 0 C and 
finally at room temperature, gave a dark green solution. Re­
moval of solvent in vacuo, extraction with hexane followed by 
CH2Cl2, and separation by preparative-scale liquid chroma­
tography on silica afforded two major components as crys­
talline, air-stable solids: brown (775-C5Hs)4Ni4B4H4 (I) (0.817 
g (18% yield based on (C5H5)2Ni consumed), Rf 0.60) and 
green (775-C5H5)4Ni4B5H5 (II) (0.465 g (10%), fl/0.49). The 
mass spectra of I and II exhibited strong parent groupings with 
intensity patterns conforming to the compositions indicated 
above. Exact mass determinations: for I, calculated for 
6 0Ni4

1 2C2 0
1 1B4

1H2 4
+ 547.9578, found 547.9576; for II, cal­

culated for 6 0 Ni 4
1 2 C 2 0

1 1 B 5
1 H 2 5

+ 559.9750, found 
559.9743. 

The 100-MHz 1H FT NMR spectrum of I in CDCl3 ex­
hibited a single C5H5 resonance at 5 5.34 ppm10 relative to 
(CH3)4Si, and an H-B singlet (11B decoupled) at 8 8.22; the 
1H spectrum of II contained C5H5 singlets at S 5.45, 5.35, and 
5.29 with relative areas of 5:10:5, and H-B resonances (11B 
decoupled) at 6 8.80, 7.25, and 4.70 with relative areas of 2:1:2. 
The 32-MHz 11B FT N M R spectrum of 1 exhibited one dou­
blet at 5 56.2 ppm10 relative to BF3-O(C2Hs)2 (JnH = 156 Hz), 
which collapsed to a singlet on 1H decoupling. The " B spec­
trum of II exhibited doublets at 5 64.7 (J = 156 Hz, area 2), 
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